370章 暴走(1 / 2)

欧叶进入答辩会现场,将她的博士论文投影到屏幕上。

“弗拉蒙特教授,努曼伯格教授,汉克斯教授,下午好。”欧叶礼貌的说到,瞟了眼旁听席的沈奇和林登施特劳斯。

主答辩官弗拉蒙特教授是一张扑克脸,他不苟言笑的说到“欧,这是你的博士研究生第四学期。”

欧叶点点头“是的。”

弗拉蒙特教授为人严厉,沈奇为欧叶捏了把汗。

不过欧叶入场之后发挥平稳,并没有虚,这是个好兆头。

弗拉蒙特教授“欧,你的博士论文《耶斯曼诺维奇猜想的证明》,我们三位答辩官已看过,接下来将由你进行3到5分钟的陈述,然后我们会提问。”

欧叶“好的。”

3到5分钟的陈述?沈奇有些意外,正常情况下博士研究生的开场陈述时间在1520分钟之间。

林登施特劳斯扭头笑了笑,他的眼神告诉沈奇我们很宽容,因人而异。

欧叶手持翻页笔,切换她博士论文的t

欧叶切到第3页“这个,卢卡斯序列。”

欧叶在第4页不做停留,直接切到第5页“这个,卢卡斯偶数,等价。”

t页码显示有101页,欧叶平均5秒钟过一页。

三位答辩官并未提出任何异议,就静静的看着欧叶飞快的刷t。

nerot,这是真正的t……沈奇从未见过如此简洁的t汇报,而t的精髓正是如此强烈的观点。

制作t的要点在于突出每一页的重点,t汇报者在有限时间内须用最精炼的语言表达最强烈的观点。

欧叶的t表达精炼到极致,101页,她5分钟就陈述完毕,语言表达风格跟平常类似,只说重点不磨叽。

nk,谢谢你的陈述,欧,接下来进入提问环节。”弗拉蒙特教授率先发问,他说到“你刚才提到了卢卡斯序列,并在论文中定义为unun(α,β)αnβnαβ,其中n为正整数,这个定义没问题,这是前提。那么我要问的是,基于这个定义前提,如何反向求出un(α,β)的本原素除子?”

弗拉蒙特教授这个问题是个陷阱啊……沈奇已将欧叶的打印版论文过了一遍,反向求出un(α,β)的本原素除子是个逻辑陷阱,因为un(α,β)不具备本原素除子。

欧叶神志清醒反应灵敏,她答到“无法求出。”

弗拉蒙特教授追问“为什么?”

欧叶切换t到13页,操作翻页笔的激光照射到un(α1,β1)±un(α2,β2),并同步解释“它不具备,本原素除子。”

“是吗?你确定?”弗拉蒙特教授继续追问。

“我确定。”欧叶无比坚定。

“下面由努曼伯格教授、汉克斯教授提问。”弗拉蒙特教授不再发问,他低头在答辩记录纸上写写画画。

努曼伯格教授长着一张圆脸,秃顶,笑眯眯像是个白人版的弥勒佛,他问到“欧,关于引理1,我并不是太明白你取5≤n≤30且n≠6的依据是什么?”

“嗯。”欧叶早有准备,她切换t到39页,这页引人注目的重点是方程(11)(2k+1)x±(2k(k+1)))y√2k(k+1)±(1±√2k(k+1))z

“给定正整数k,无z≥3的正整数解。”欧叶说到。

nk,我暂时没有问题了。”努曼伯格教授低头记录,应该是在给欧叶打分。

第二个问题一问一答不过一分钟,但旁听的沈奇知道这个问题绝没有看上去那么简单。

如果(x,y,z)是方程(11)的正整数解,根据前提定义可知1+√2k(k+1)与1√2k(k+1)形成卢卡斯偶数。

由方程(11)可得一个新方程,即欧